
www.manaraa.com

Advanced Evasive Data Storage in Sensor Networks
Zinaida Benenson Felix C. Freiling

University of Mannheim, Germany
Peter M. Cholewinski

SAP - Research and Breakthrough Innovation, Germany

Abstract—In case the data which is stored and processed in
a sensor network has some value, it needs to be protected from
unauthorized access through a security mechanism. The idea
of evasive data storage is that data moves around the sensor
network instead of remaining at a fixed location. In this way, an
adversary, who has once (through node capture) had access to
the data stored at some particular node, must compromise more
sensors in order to maintain his illegitimate access to the sensor
data. We refine the previously published Simple Evasive Data
Storage techniques in two ways: (1) we improve the efficiency of
data retrieval by bounding the area in which data may move,
(2) we introduce Data Splitting as a technique to protect against
sleeper attacks in which the adversary simply takes over a subset
of nodes and waits for valuable data to pass by. We demonstrate
the effectiveness of our approach using extensive simulations.

I. INTRODUCTION

Wireless sensor networks are networks of tiny computing
devices that are equipped with sensors to measure environ-
mental conditions like temperature, humidity, movement or
noise. The sensors are usually also equipped with a wireless
communication device to communicate with other sensors.
Applications of sensor networks range ¿from environmental
monitoring (fire control, seismic activity) over process control
(monitoring of physical/chemical production processes) to
military applications (location and battlefield surveillance).

Sensor networks can be regarded as widely distributed
databases which store and process sensed data. In case the
data which is stored the sensor network has some value, it
needs to be protected from unauthorized access through a
security mechanism. One of the most obvious ways to illegally
access the data in a sensor network also has one of the most
obvious solutions: An attacker which eavesdrops on the data
that is transmitted over the wireless communication link can
easily be defeated by encrypting this data. Standard low-cost
mechanisms exist to establish pairwise encrypted channels in
sensor networks [10], [15], [5], [8]. Other attacks however are
not so easily defeated.

One of the most dangerous attacks on sensor networks
is node capture. A node capture occurs if an adversary
completely takes over a sensor node and uses it to spy on
valuable data which is stored and processed within the sensor
and the entire sensor network. Node capture is a realistic threat
since sensor nodes usually do not have any mechanism of
tamper-resistance and accessing their internals (memory, secret
keys, etc.) is relatively easy. Node capture is also hard to detect

Zinaida Benenson was supported by Landesstiftung Baden Württemberg as
part of Project “ZeuS”.

and so remains “one of the most vexing problems in sensor
network security” [9].

Different concepts have been introduced to withstand node
capture attacks in sensor networks. Most of them exploit the
massive spatial redundancy in sensor networks. Vogt [14]
focusses on message authentication and uses multiple authen-
tication paths to detect corrupted nodes. In a similar direction,
Przydatek et al. [11] investigate secure data aggregation by
using random sampling and interactive proofs to eliminate
cheaters. Karlof and Wagner [7] focus on secure routing. A
different paradigm to combat node capture was proposed by
Bicakci et al. [3]. Their one-time sensors can only be used a
limited number of times and therefore quickly become useless
to an attacker. We are aware of only one paper which considers
secure storage in sensor networks: Ghose et al. [6] investigate
the resilience against loss of certain nodes in data-centric
storage by distributing information over several nodes. In this
paper we follow the distinct approach of Evasive Data Storage
(EDS) which was presented in previous work [1].

EDS in sensor networks was introduced to limit the power
of an adversary which is able to perform node capture. The
basic idea of EDS is that valuable data does not reside in a
fixed location in the network, but wanders around the network
in an unpredictable fashion. An attacker, who has captured a
node storing aggregated (and therefore precious) data will at
some point in time lose access to this data since the data will
not be stored in the captured node anymore. EDS therefore
goes one step beyond methods like Data Centric Storage [13]
or Local Storage (each node stores the data generated by it).
EDS can therefore drastically improve the security of a sensor
network if the right strategy of evasion is chosen [1].

Two concerns about the simple EDS schemes in previous
work have been raised. The first concern deals with the fact
that existing simple EDS algorithms are not very commu-
nication efficient. Especially retrieval operations necessarily
need to flood the network with requests since the maintainers
of the sensor network have no more knowledge about the
whereabouts of the data than the attacker. The second concern
deals with the problem of so-called sleeper attacks. In a sleeper
attack the adversary simply takes over a subset of nodes and
waits for valuable data to pass by.

In this paper we present more advanced variations of
the EDS notion which avoid the above problems. The first
enhancement improves the retrieval properties of the simple
algorithm. The Location Bound EDS approach restricts the
area where evasion may occur. This generalization basically
introduces a parameter that connects the two extremes of

1-4244-1241-2/07/$25.00 ©2007 IEEE

www.manaraa.com

traditional storage and evasive storage, therefore granting more
control over the process and a decrease in the complexity of
the data retrieval.

The second enhancement is Data Splitting (DS) which can
successfully counter sleeper attacks. The idea is to split data
in smaller pieces which will then wander through the sensor
network independently. This basically means that the infiltrator
looses his jackpot advantage: without DS a malicious node will
win the instance data is moved to it; with splitting however,
malicious nodes have to collect a bunch of small pieces until
they can reassemble the complete data record.

In summary, EDS is another instance of the “guerilla tactics”
approach to security in sensor networks [2].

We first present some definitions and the model of a sensor
network we use in the algorithms in Section II. Then we recall
SEDS [1] in Section III. Finally, we present the concepts
of Location Bound EDS and DS in Sections IV and V,
respectively. For lack of space we only give algorithm and
proof sketches here. The full details as well as the source
code of the simulations can be found elsewhere [4].

II. DEFINITIONS AND MODEL

A. Network Model

Considering a snapshot of a sensor network at a given
instance, we assume n nodes in total, among which h hot
nodes can be found. Hot nodes are assumed to store precious
data and are the target of attackers.

Following common notation for algorithms in sensor net-
works, we also present the steps from the point of view of a
single sensor node, denoted as s. This node can only interact
directly with nodes in its vicinity V (s), where each one such
node can be referred to as a vicinity node v ∈ V (s). The
vicinity of a node is mainly defined by the strength of its
wireless communication device it disposes of.

If it is necessary to refer to a message sent in the network
without giving away any detail about its contents or structure
the notation msg is used to identify such a message. We
assume that communication links are encrypted.

B. Communication Primitives

Nodes communicate using local broadcast, i.e. a node s can
communicate with all nodes v ∈ V (s) with a single message
in one communication step. Local broadcast is assumed to be
probabilistic, i.e. the probability that a node in V (s) receives
the message is plb. This probability also influences other types
of communication which are build on top of local broadcast,
including point-to-point message passing and global broadcast
primitives. The probability plb can be ascribed to the harsh
environment the nodes exposed to (packet loss), as well as to
the possibility of failure.

C. Adversary Model

We define several different models for the adversary that
reflect realistic possibilities. An adversary A can exhibit two
basic skills, namely traffic analysis and intervention skills. The
former can take the levels blind, local and global, whereas

the latter is subdivided into passive and active. The traffic
analysis levels merely describe the region an adversary can
observe, rendering a blind adversary inapt to perform any
traffic analysis, allowing a local adversary to observe a fraction
of the network and ascribing the global adversary observability
of the complete network. Although the local adversary might
call for a more detailed definition of the boundaries imposed
on the local region he can observe, for our purposes it suffices
to state that he cannot track traffic in the complete network
(in most cases it can be assumed that he can observe traffic
generated by nodes that are in his vicinity which is only little
larger than that of an average sensor node).

In the case of intervention, the levels describe how much
power an adversary has to influence the behavior of sensor
nodes: the passive case allows an adversary only to extract
data from a node, whereas the active case allows for complete
take over of the node including the scenario where the node
is forced to exhibit arbitrary behavior.

weak

strong

active strong

global

local

blind

passive

blind

local

global

Fig. 1. Adversary Lattice

Those two basic skills, traffic analysis and intervention, are
orthogonal and define a lattice of different types of adversaries,
depicted in Figure 1. An adversary will always be specified
as a pair of skills, where the first component indicates the
traffic analysis level and the second the intervention level. For
instance, an adversary A(local, passive) can observe traffic
only in his vicinity and when accessing a node only data
extraction is an option for him, disallowing him to influence
the behavior of the node.

In this paper we want to stress the case of a passive
adversary that tries to access specific data in the network. With
non evasive storage methods such an adversary can access
data easier than in the evasive case, especially when he is
looking for updates of data he already accessed. This property
should become clear from the description of the notion in the
following section. As we are proposing advanced variations of
the EDS, we are also going to step into the realm of an active
adversary, when taking a look at the DS notion.

III. SIMPLE EVASIVE DATA STORAGE

We now recall the SEDS algorithm [1]. The idea behind
EDS can be put in quite simple terms. Distinguishing between
the possibility of fixing the h hot nodes and enabling those
h nodes to vary over time, gives rise to data evasiveness.
However this is different from the movement of data seen,
for example, in Data Centric Storage [13], [12], where data

www.manaraa.com

is moved to other nodes for storage, because once data
reaches that final storage node, the node will remain hot. Data
evasiveness, on the other hand, is the process of intentional
shifting of data as part of long term storage, i.e. hot nodes can
loose their status of being hot as time passes by, all to achieve
the ultimate goal to defend against illegitimate retrieval of data.

As an adversary approaches a node that by his knowledge
used to store data at some past instance of time, the EDS
algorithm will have moved data in several displacement steps
away from that node, thus an adversary will not succeed with
probability 1.0 as in conventional approaches, but will have
to try out close neighbors of the former hot node with a
drastically lowered success rate.

A. Algorithm

A simple algorithm that implements the basic notion of EDS
makes a hot node s, that received or generated some data D,
actively choose which node v ∈ V (s) should become the new
harbor for D.

More specifically, the following sequence shows what is
performed by a hot node s:

• s sends an evasion request to all v ∈ V (s)
• all v ∈ V (s) respond indicating participation
• s receives responds and invokes the Choice choice func-

tion on the nodes that indicated willingness to participate
• Choice returns a single node, the chosen node c
• s transmits the data D to c
• c acknowledges reception

Naturally, transmission of the data D to the chosen node c
needs to be encrypted such that other nodes in the vicinity
cannot obtain data easily and also to prevent an adversary A
to eavesdrop on the transmission gaining unauthorized access
to data D without any substantial effort.

The algorithm now has to be put into context of storage:
the assumption made is that data starts wandering directly after
being generated, thus it is never assigned any particular node
nor are means provided to inform base stations or other entities
of its existence. Hence, to complete the approach to form a
data storage mechanism, a short discussion of data retrieval is
necessary. As there is no knowledge available concerning the
whereabouts of data in the network at the time a legitimate
user queries the network for data, the most straightforward
approach for retrieval is flooding.

Compared to conventional storage the simple evasive data
storage algorithm naturally lowers the success probability of
an adversary A that tries to access a hot node periodically
for updated data items: in conventional storage his chances
are (almost always) equal to 1.0, whereas in EDS his chances
are substantially less than 1.0. Furthermore a more detailed
evaluation regarding how much worse the chances of A are can
only be obtained when more information about the employed
choice function Choice is available.

B. Choice Functions

The core of the EDS notion is the parameter Choice,
i.e. the concept of a Choice Function. Four fundamental

choice functions and a specific combination technique have
been proposed that naturally allow to obtain a myriad of
choice functions. The four choice functions are given from
the perspective of executing node s:
◦ UVicinity: choose a ∈ V (s) with uniform probability.
◦ UFurthestk: choose a ∈ V (s) with uniform probability

among k furthest nodes from s.
◦ GNodeFurthest: choose a ∈ V (s) that is furthest from

the generating node, which is assumed to be provided by
the respective data.1

◦ DirectionV: use an initial direction vector or change the
current one with probability pc to choose a node in V (s)
that is closest to the direction vector.

Of course, there are even further choice functions that can
found and be argued for usability in different contexts, but in
scope of this work we limit our attention to those just given
and a simple combination technique, which resembles con-
catenation: given two choice functions Choice1 and Choice2,
a new choice function Choice∗ = (Choice1, e, Choice2)
results from making the first e evasion steps using Choice1

and thereafter using the Choice2 indefinitely. Hence, the new
choice function Choice∗ can be seen as the concatenation of
two choice functions, where the exact moment of changing
from one function to the other is parameterized by e.

From a security point of view, it is most desirable to have the
choice function form a uniform probability over the complete
network, i.e., the probability of storing a particular data item
is equal for all the nodes in the network. Previous work
[1] identified a combination of two basic choice functions
that provides satisfying results: (DirectionV, e

2 , UFurthestk).
This combination has revealed to have a desirable probability
distribution, assuming the parameter e

2 is chosen adequately
(taking into account the size of the sensor). To put in words
what this function basically does: it will first move the data
away from the original node in some random direction and
then evade the data in the newly reached region.

C. Simulation Setup

As means of showing the effectiveness and workings of the
proposed algorithms, we make use of simulations just as it
was done in [1] for SEDS.

To investigate the EDS notions a network of 10000 nodes is
set up within a rectangular grid and data is evaded for a certain
number e of evasive steps starting some node (mostly located
at (0, 0)). Also the simulations were carried out with a vicinity
radius of 3, thus strongly limiting the amount of reachable
neighbors of nodes as otherwise the algorithms and choice
functions could not have been evaluated properly. As most of
the algorithms offer quite some parametrization possibilities
(for instance regarding triggering intervals), we will mention
only the crucial values used when referring to the simulation
results. Also if one of the basic parameter is changed, we will
point that out in the text.

1Other means to specify the generating node are also possible, even ones
that do not correspond to the genuine intention of this choice function.

www.manaraa.com

The crucial goal to be achieved in most of the simulations
is to show that an adversary is bestowed with a lower success
probability for data retrieval when one of the EDS algorithms
is used.

IV. LOCATION BOUND EVASIVE DATA STORAGE

This section aims to present a refinement to the SEDS
algorithm yielding better properties when performing data
retrieval and update respectively, but not loosing the security
advantages inherent to EDS at the same time. The notion
introduced will be referred to as Location Bound EDS.

Unlike the conventional assumptions that the sensor network
contains data stored in h distinct hot nodes (which remain hot
over their life time), the Location Bound EDS allows for h
distinct hot regions that are responsible for storing the data
gathered by the sensor network’s nodes. Before completely
diving into the notion of Location Bound EDS the concept of
a hot region or hot group, as it will be referred to, needs to
be introduced.

A hot group H is a set consisting of d sensor nodes such
that for each arbitrary pair a ∈ H and a′ ∈ H , there is a way
to exchange messages by using nodes within H only. Thus,
nodes in a group can move data around without having to rely
on nodes that are not members of their respective group.

Now that hot groups are a familiar term, Location Bound
EDS can be talked about in more detail. It forms an extension
to the traditional notion of having h hot nodes in a sensor
network by replacing single hot nodes with h distinct hot
groups, where each group has at most d ≥ 1 members in order
to store the gathered data. It is tried to keep the cardinality of
each H to be as close to d as possible at all times, however
due to failures this cannot be guaranteed at every point in time.
Within each such group H data is assumed to be able to move
around freely (an evasive storage mechanism is employed),
but is not allowed to leave the group, therefore restricting
the impact evasiveness has on the overall traffic within the
network, but more importantly: restricting the location where
data needs to be looked for.

The definition of Location Bound EDS has the property of
fitting nicely into the picture that has been presented up till
now:
◦ setting d to be equal to 1, the Location Bound EDS

becomes the now widely assumed storage where data is
fixed at h distinct hot nodes.

◦ at the other extreme, setting d = n, hence making
the whole network available to evasiveness, the concept
collapses to the SEDS algorithm introduced in the last
section. 2

Note that there is no restriction in the definition of hot
groups that disallows the possibility of having some node a
belong to two distinct hot groups. This is the reason why
setting d = n works out to be possible and results in the
SEDS algorithm from the last section. In most cases however,

2This presumes that the evasiveness approach used in a hot group is actually
equal to SEDS.

the setup of hot groups will avoid multiple membership of
nodes.

Having given the definition, all we need to make clear
now is that employing SEDS within those hot groups will
allow us to attain a uniform probability distribution within the
hot region by using (DirectionV, e

2 , UFurthestk) as Choice
Function. Figure 2 shows the probability distribution that
results after e = 18 steps originating from (0, 0) (middle of
the plane shown in the figure). What happens therefore, is that
the first nine steps are used to move data away in a random
direction and the remaining ones more data in the reached
region.

 0
 2e-05
 4e-05
 6e-05
 8e-05
 0.0001
 0.00012
 0.00014
 0.00016

-50 -40 -30 -20 -10 0 10 20 30 40 50
X Coordinate -60

-40
-20

 0
 20

 40
 60

Y Coordinate

 0
 2e-05
 4e-05
 6e-05
 8e-05

 0.0001
 0.00012
 0.00014
 0.00016

-50 -40 -30 -20 -10 0 10 20 30 40 50
X Coordinate -60

-40
-20

 0
 20

 40
 60

Y Coordinate

 0
 2e-05
 4e-05
 6e-05
 8e-05

 0.0001
 0.00012
 0.00014
 0.00016

Fig. 2. Probability distribution after 18 evasive steps for choice
function (DirectionV, e,UFurthestk).

Thus the probability distribution shows what we have
gained: an adversary has to consider all nodes in a specific
region in order to obtain data, which given an adequate
size of a hot group can still lead to significant security
properties3. One the other hand, as we have restricted the area,
we have alleviated the SEDS notion from its inherent data
retrieval problems: now no flooding of the complete network
is necessary anymore, but can be restricted to the comparably
smaller region of a hot group.

We have also conducted simulations with implementations
of the Location Bound EDS and show a simulative picture of
the algorithm in Figure 3 for a 18 evasive steps (grey marks the
hot groups in the network). The Choice Function used here for
Location Bound EDS is DirectionV with pc = 0.05 implying
that a direction change will occur with a small probability
during an evasion step.

Figure 3 also points out some details of the approach that
need to be mentioned. The hot groups have to be setup
somehow. The simplest way to achieve this is use the same
technique as done in Data Centric Storage: have a global hash
table deployed at each node, which then has pre-configured
locations assigned to hot groups. Hence, every node will
be able to identify which hot group it should send its data
for (evasive) storage to and also have knowledge about the
whereabouts of the group.

Thus as shown in the figure, three data items are assigned to
three hot groups located in the network and forwarded directly

3Now the e parameter has to consider the size of the hot group instead of
the whole network.

www.manaraa.com

to a head node of the group, from which the evasive storage is
initiated. It should be clear that hot groups ought to fulfill two
properties: (1) the union of all hot group member nodes should
be significantly smaller than n, and (2) intersections of hot
groups should be avoided. The latter is especially important
when considering energy consumption, as participating in
several hot groups will put a higher energy drain on a node.

-40

-30

-20

-10

 0

 10

 20

 30

 40

-40 -30 -20 -10 0 10 20 30 40

-40

-30

-20

-10

 0

 10

 20

 30

 40

-40 -30 -20 -10 0 10 20 30 40
x-coordinatex-coordinate

y
-c

oo
rd

in
at

e
y

-c
oo

rd
in

at
e

Fig. 3. Location of hot groups after 18 evasive steps for choice
function DirectionV with pc = 0.05

V. EVASIVE DATA STORAGE WITH DATA SPLITTING

A crucial (security) problem that can be ascribed to simple
EDS is the possibility that an adversary can infiltrate the
network with malicious nodes, which we know from the
adversary models to be an active adversary A. The malicious
nodes A takes over can idle until data is evaded to them,
hence making it even simpler for A to get data. Of course,
this scenario needs to be put into context: a realistic number of
malicious nodes is minute, thus we felt that the problem is not
as severe as to render the whole approach less useful, but still
should deserve some attention. A simple solution is offered by
the DS notion, which splits data D into s many splints that
contain only a fraction of the information actually stored in
D. The complete description of the generation of those splints
includes the usage of the assumed cryptographic primitive
with the goal in mind to encrypt D before splitting it up,
such that every single splint does not provide any significant
information to an adversary until he collects all splints of
D. Of course, the usage of cryptographic primitives has to
consider the restrictions imposed by sensor networks, thus also
forces usage of simple methods only for DS.

One very simple method would be to create some per-
mutation P for data D, which then acts on D to obtain
D′. Encrypted D′ is then divided into splints of equal size
d1, . . . , ds; where for storage one is attached the necessary
information for reversing P . Of course, it is assumed that P
can only be used for decryption of data when all s many splints
are available. Otherwise, A could get lucky when he catches
the one splint including P -appendages and is able to extract
some information.

How does DS increase security given that malicious nodes
wait for data to be displaced into their palms? This question is
easily answered assuming that a single splint does not provide
an adversary A with any significant information about the data
D at hand. Then in order for A to be successful, he needs to
collect all s splints before capturing D, which naturally will
not happen as easily compared to the case where no splitting
is applied. The main reason for this is that each splint can
take a different path in the network during evasion. Hence,
we can also identify the parameters that influence the success
of DS which are the size of the network as well as the value
of s. The former is providing the splints with sufficient space
not affected by malicious nodes to explore. The s increases
the work for the adversary, as a larger value for s implies a
longer time interval until A can collect all splints. We will
provide more accurate information about the usability of DS
in the discussion of the simulation results to follow.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Number of Evasion Steps

number of splints: 1
number of splints: 3
number of splints: 5

Fig. 4. DirectionV (pc = 0.05) with non-cooperative 5 percent
malicious nodes

The main parameter that influences the properties of the
algorithm is s, the number of splints that the splitting is
supposed to generate. The steps algorithm performs are simple:
instead of storing the data item D with an EDS algorithm, the
data item is preprocessed, split, and then each of the resulting
splints is passed on for storage with one of the EDS, like
Location Bound EDS from the last section. We will not dive
into too much details of how the actual splitting is done or
what factors are necessary to take into account (encryption,
for instance). What we want to comment on are the simulation
results that are shown in Figures 4, 5, and 6 respectively. The
simulations are performed in a network of 3600 nodes, i.e. a
place of 60x60. The evasion is started at location (0, 0) and
malicious nodes are randomly distributed in the network.

Figure 4 shows the success probability an adversary that
infiltrated 5 per cent of the nodes in a sensor network in
dependence of the number of steps. Here the simulative
results consider non-cooperative malicious nodes. The non-
cooperative property states that every malicious node has to
collect all splints itself, before it can extract any data from its
collection. It can be seen that without DS the adversary can
achieve remarkable results from his sleeper attack, however
even a very small splitting size s brings significant improve-
ment.

Even when considering collaborative malicious nodes as

www.manaraa.com

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Number of Evasion Steps

number of splints: 1
number of splints: 3
number of splints: 5

Fig. 5. DirectionV (pc = 0.05) with cooperative 5 percent
malicious nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Number of Evasion Steps

number of splints: 1
number of splints: 3
number of splints: 5

Fig. 6. Long term behavior with non-cooperative
5 percent malicious nodes

shown in Figure 5, the impact on DS is not heavy. Although
the malicious nodes are now assumed to be able to exchange
all the collected pieces in order to puzzle together the data,
their gain from doing so is minute. As can be seen for s = 3,
the probability increases only insignificantly. Nonetheless, the
rise of the success probability with the number of evasive
steps, asks for a look at the long term behavior.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Number of Evasion Steps

number of splints: 1
number of splints: 3
number of splints: 5

Fig. 7. Long term behavior with cooperative .25
percent malicious nodes

Hence, we will see what happens after several hundred
evasion steps, which is considered to span over a very long
period of time during the sensor networks life-period. Figure
6 shows results that consider DS with EDS under a non-
cooperative sleeper attack. It becomes clear that DS is only
a technique that buys time, but will not allow to counteract
sleeper attacks indefinitely. We have omitted the 5 percent
figure for the cooperative case, as this showed that such a

large cooperative sleeper attack renders DS not very effective
for the considered s values of three and five (the curves are
almost identical to the curve of EDS without DS).

Figure 7 indicates that under more realistic assumptions of
a low number of hostile, cooperative nodes in the network, the
addition of DS does indeed help to counteract successful data
retrieval, even for small amounts of splints. But again, only
for a bounded time-span: eventually all curves will converge
for arbitrary s values. We do not see this as a problem, as
a large number of evasion steps needs to take place until a
convergence is reached and this would certainly correspond
of a time span well beyond the lifetime of a sensor network.

REFERENCES

[1] Z. Benenson, F. Freiling, and P. Cholewinski. Simple evasive data
storage. In Proc. 17th IASTED International Conference on Parallel
and Distributed Computing and Systems: First International Workshop
on Distributed Algorithms and Applications for Wireless and Mobile
Systems, 2005.

[2] Z. Benenson and F. C. Freiling. On the feasibility and meaning
of security in sensor networks. In 4th GI/ITG KuVS Fachgespräch
“Drahtlose Sensornetze”. Tech. Rep. TR 481, Department Informatik,
ETH Zurich, Zurich, Switzerland, Mar. 2005. http://www.vs.inf.ethz.ch/
events/fg2005/fgsn05.pdf.

[3] K. Bicakci, C. Gamage, B. Crispo, and A. Tanenbaum. One-time
sensors: A novel concept to mitigate node-capture attacks. In 2nd
European Workshop on Security and Privacy in Ad hoc and Sensor
Networks (ESAS2005), 2005.

[4] P. M. Cholewinski. Evasive data storage in sensor net-
works. Diploma thesis, RWTH Aachen University, Germany,
Department of Computer Science, 2005. Simulation code can
be downloaded at https://pi1.informatik.uni-mannheim.de:8443/pub/
research/downloads/EDS-Simulator-1.0.zip.

[5] L. Eschenauer and V. D. Gligor. A key-management scheme for
distributed sensor networks. In Proc. 9th ACM conference on Computer
and Communications Security, pages 41–47. ACM Press, 2002.

[6] A. Ghose, J. Grossklags, and J. Chuang. Resilient data-centric storage in
wireless ad-hoc sensor networks. In MDM ’03: Proceedings of the 4th
International Conference on Mobile Data Management, pages 45–62.
Springer-Verlag, 2003.

[7] C. Karlof and D. Wagner. Secure routing in wireless sensor networks:
Attacks and countermeasures. Ad Hoc Network Journal, September
2003.

[8] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor
networks. In Proc. 10th ACM conference on Computer and Communi-
cations Security, pages 52–61. ACM Press, 2003.

[9] A. Perrig, J. A. Stankovic, and D. Wagner. Security in wireless sensor
networks. Commun. ACM, 47(6):53–57, 2004.

[10] A. Perrig, R. Szewczyk, V. Wen, D. Cullar, and J. Tygar. SPINS: Security
protocols for sensor networks. In Proc. MOBICOM, 2001.

[11] B. Przydatek, D. Song, and A. Perrig. SIA: Secure information
aggregation in sensor networks. In ACM SenSys 2003, Nov 2003.

[12] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker. GHT: A geographic hash table for data-centric storage in
sensornets. In Proc. First ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA), Atlanta, Georgia, Sept.
2002.

[13] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-
centric storage in sensornets. In Proc. First ACM SIGCOMM Workshop
on Hot Topics in Networks, Oct. 2002.

[14] H. Vogt. Exploring message authentication in sensor networks. In
Security in Ad-hoc and Sensor Networks (ESAS), First European Work-
shop, volume 3313 of Lecture Notes in Computer Science, pages 19–30.
Springer, 2004.

[15] S. Zhu, S. Setia, and S. Jajodia. LEAP: efficient security mechanisms for
large-scale distributed sensor networks. In Proc. 10th ACM conference
on Computer and Communication Security, pages 62–72. ACM Press,
2003.

